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Abst ract, The M, norm for a system with flexible structural
propertices is a function of its largest Hankel singular value,

‘The computation of the 7, norm of a linear system is a
computationally intensive search process {1 -3], speeifically in
the case of flexible syslems. This paper piesents a direct way
to determing the H, norm for flesible structures which avoids
ilera lions.

1 lbis paper a flexible structuie is defined as a
controllable and observable linear system with distinct complex
conjugate pairs of poles (N poles, N is even), and with small
negative real parts of the poles. | n the Moore balanced
coordinates [4] it consists of n= N/2 components |5, 6], and
each component consists of wo slates. 1 et{4,B8,C)be a state-
space triple of a flexible structure, and G=CiIA)IBils
transfer function, with the 71, norm defined as follows

I(;Im;"gl) omn{G(j‘*‘)) )

The syslem  controllability and observability grammians W,
and W. arc posilive-definite and satisfy the 1.yapunov equations

AWt WAV BB=0, AW, WAL CCr= 0. (2)

‘The system representation is balanced in the sense of Moore

(cf. [4D if its controllability a n d observability grammians
arc cqualand diagonal

W= W =12, U'=diag(y,,..., vy} 3)

where 7;> 0 is the i-th Hankel singular value of the system, and

the Hankel singular values arc in the decreasing order,
¥Ea i 1. 11L

Futther, an approximate equality between two variables is
used in the following sense. Two variables x and y arc
approxinately equal (x&y) if x=-y+ ¢, and wew/iyn«l. Jiis shown,
sce S5, 6], that for a balanced ficxible systein (4, 8, C) with n
components (or N=2nslates), the balanced grammian has the
following form

rediag(y,, v, ¥ 7,,7,) (4)

and the matrix 4 is almost block-diagonal, with dominant 2x2
blocks 011 the main diagonal

4
",
Azdiag(d), A= g ,;g i=d ©)
1) 1)

where w, is the i-lb natural frequency of the structure, and ¢
is the 1 thmodal damping. Notealso that introducing 1:+(4)
and (5) 10 (2) gives

HA+ A =B - QG 6)

and B, Carci-th row and column of B and C, respeclively.

The H,, nom is evaluated from the Riceati equation, as shown
in [1-3]. 1t is the smallest positive parameler p such that the
solution of the following Riccati equation is posilive-definite

AVS+ S p2spprs C1C: 0. ()]
From Ibis definition il follows that:
Froposition. Yor G being a lansfer function of a flexible

structure i n the state space representation (4, B, C), its H,
normisas follows

j6].e241 ®

where ¢ is the largest 1 lankel singular value of the system.
Proof. For a flexible stiuclure, duc 10 properlies (4)(6) the
solution S of the Riccali equation (7) is diagonailly dominant,
sec [7)

S=diag(sy, 8y, . . .. 5, 85,) 9)
where §; is a solution of the following equation
i=1,..., N (10)

and A4, B, and ( are given in (S), Introducing (6) to (10)
onc obtains

S{AAANA st i) C1Cx0,

A AD-s2302(AA AV AA A0 (11)
or
55680 216120 (12)
with two solwtions s and s
=050 2(1-8),  sD=0.5p2Y14 B, (13a)
B |1 4467 (13b)

For p;=2y} one obtains ${V=s@= 2, and p,= 23} is the smallest
value of p, for which a positive solul’ lon s, exists. It is
indicated by the plots of s and g vs p, In Fig. 1. To
obtain S positive definite, a Il s must be positive. Thus the
the largest p from the set {p, py-..y £} is the smallest onc
for which $>0, theiefore

'(ium: max pE2si o (14)

The proposition shows that the computation of the  H,, norm
consists of a standard procedure of computing the system Hankel
singular values, and that the largest Hankel singular value
determines the required norn,




Example. A truss struclure as in Fig.2 is investigaled. For
(his slruclurc(l#>70 W, &= 100 in.; each lruss has a Cross-

section area o 2inntleeastic modulus of 100 1b/in.2, and
mass density of 2 b sec?in?,  Verlical control forces are
applied at nodes nal and na2, and the output rales arc measured
in the vertical direction at nodes nol and no2, The system has
26 slates (13 balanced components), two inputs, and two
outputs. s H,, norm is computed through ilerations of Riccati

equation (7), obtaining "Gl=»]..?40852,]! took 24 iterations to
obtainthe required accuracy € =109, as shown in Fig.3. The H,,
norm is also obtained from (8), and in this case IGLL 1,340850,
withthe same accuracy ¢ = jg6.

In conclusion, the estimate of the H, norm (8) is oblained

without costly searching, with the estimation error close to
the machine zero.
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Fig.2. Truss struclure
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